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Perturbed Kepler problem in quaternionic form 
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Abshact. A new technique for solving the permrbed Kepler problem is presented. As its 
approach is essentially algebraic, it can be easily computerized and carried out IO any perturbation 
order. It also eliminates the notorious difficulty of small divisors, and is well suited to deal with 
commenswable orbital periods, as demllsffjlted by its explanation of Kirkwood gaps. 

1. Introduction 

It has been known for quite some time [8] that transforming the Kepler problem to a 
linear and regular form (the KustaanheimWStiefel equation) has several advantages over 
the traditional formulation. The new approach utilizes quatemion algebra, and solves the 
problem in terms of a quaternion-valued function, which is, in a very symbolic sense, a 
square root of the satellite's location r. Since quaternions possess an extra (redundant) 
dimension, a 'gauge' has to be designed to make this solution unique (thus, a gauge is 
simply a choice of a onedimensional constraint, restricting each potential solution). Until 
recently, only numerical aspects of the new technique had been fully exploited, using a 
gauge appropriate for that purpose. The objective of this paper is to advance yet another line 
of development, which builds an analytical solution to the Kustaanheimc-Stiefel equation 
based on a novel gauge. 

The technique is a special case of a wider class of possibilities of linearizing Kepler's 
equation 171, and has been chosen as a basis of this paper because it lends itself easily to a 
traditional pehrbation treatment. 

2. LLearized Kepler equation 

It has been shown [lo], and then further expounded [ I  I], that the Kepler problem under a 
small perturbing force f, namely 

r 
i:+LL?=&f r (1) 

is equivalent to the following quaternion-algebra equation 

m"-[U'Ti'-4(A2+ B 2 ) ] - + 2 W ' ~ + W ( ~ ) -  LL (*/+U;) r A'A+ B I B  
r r A2 + B2 

= -&LLrfHZ. (2) 
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Proofs summary. (The bullets below explain our notation.) 

premultiplied by 

u r  
HELL + HWi = -W’ - -. 

r 

d 
dt 

rH- + rH(HWi)‘ = -?,U”- 

Expanding the left-hand side of the last equation yields: 

rHZW(cf-$j) + H ‘ ~ L L ~ + H ~ L L ‘ ~ = & H z L L ~ ~ + ~ ( A z + B ~ ) -  
U 

from which equation (2) easily follows. U 
L( is a quaternion function of a modified times (the independent variable of the equation), 

(3) 

and can be expanded as follows 

LL = exp(Pa){A expob) exp[i(s -so)] + B exp(-jb) exp[-i(s -so)] + D + &&S)X 

where 
i, j, e, are the three generators of quaternion algebra, (‘fraktur’ font is used for 

quatemion quantities, an overbar implying quaternion conjugation); 
a is an arbitrary real function of s, having no physical meaning (in our gauge we 

make a E 0); 
A, B ,  so, and b are real parameters defining the orbit’s major semi-axis A’ + BZ, 

eccentricity 2AB/(A2 + B2) ,  modified time at apocenter SO, and perpendicular dislocation 
b; 

= 1 
(together with A, B and SO the three parameters of X represent a direct analogue of the six 
classical orbital elements and will be referred to as such from now on); 

D is aseries in odd powers of E exp[i(s-so)] with complex (no j and e) coefficients 
and zero E and E-’ terms; 

S is similarly an expansion in even powers of E, complex coefficients, zero E-’, Eo 
and EZ terms, and such that 9 = -S*. (the asterisk indicating complex conjugation); 

U, equals AE + BE-’ and represents the unperturbed solution in Kepler’s frame; 
r E ex + jy +iz is a quaternion representation of the orhit’s location, and equals EW, 

similarly f €‘fx+jfy+ifz (note that rfdenotes the implied quaternion multiplication); 
r = BW’ - 3% and is equal’ to zero for the unperturbed solution (the old gauge 

would make r identically equal to zero); 
H 2  = 4 ( A Z + B Z ) / p ,  which also serves to define the modified time s, via ds = dt/rH. 

We also introduce ,3 = B/A and z = E2 for future convenience. 
One can show that this form of U is fully general [IO]. 

R is aquaternion representation of the orbit’s attitude [3], which must satisfy 

implying, for the corresponding distance, r = m; 
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Main points of proof. U is built in a Fourier-like manner as a series of odd (positive and 
negative) powers of exp(i), each post-(or, equivalently, pre)-multiplied by a quaternion 
coefficient Cn ( n  being the corresponding power) with, potentially, its own slow time 
dependence (eventually, ‘slow’ will acquire two distinct.meanings: either the time derivative 
is of the O(&) type or the coefficient is oscillatory with a period which is at least twice as 
long as that of the perturbed satellite). This will result in r being a general series in even 
powers of exp(is) with ‘vector’ Coefficients (an ordinary Fourier series). E, and C-1 are 
then rewritten in an equivdent form of equation (3). to parametrize them in a physically 
meaningful manner (six of them to closely resemble the classical orbital elements). This 
parametrization is one-to-one, therefore a, and the corresponding gauge, are well defined. 
Note that the algebra of matching the Fourier coefficients of both sides of equation (2) 
will be greatly simplified by expanding all expressions in terms of an auxiliary variable 

0 

Equation (2) is usually solved in the Kepler frame, i.e. post-multiplied by %, with 
%‘% = Z/2 (2, as all our vectors, will be expressed in its quaternion representation, 
analogous to that of r and f; it represents the orbit’s slow rotation). 

The iterative solution of the next section will consider the above ‘parameters’ (in the 
case of the six orbital parameters, their time derivatives) as functions of s, expanded as 
a power series in E (with no absolute term). The coefficients of these €-expansions will 
explicitly (carrying the s-dependence) depend on: the orbital elements, external parameters, 
and small (between -4 and 1) powers of z. Subsequent integration of the resulting set of 
differential equations is thus necessary. On the other hand, b and the individual parameters 
of both D and 6 are found directly, in the form of similar &-expansions. 

z = exp[2i(s -SO)], with the quaternion coefficients redefined accordingly. 

3. Iterative solution 

The solution to equation (2) can be built in an iterative manner by substituting the current, 
$“accurate solution (starting with &), into equation (2) and collecting all EN+’-proportional 
terms on the right-hand side of the equation (let us call the result Z [ N + ~ I ) .  To find the E ~ + ’ -  

component of A’, B’, $,, Z, b, D and 6, we decoupIe & N + I ]  into two complex expressions 
by pre-multiplying it first by K/2ro(l + pz) and then by -zt/ro (where ro = Li;;L(o), 
keeping the complex part of each result only (let us call the results Q ~ + l l  and W(,+,I 
respectively). Note [IO] that W [ N + I I  = -WTN+l,, reflecting, and effectively removing, the 
extra quaternion-algebra dimension. Each QiN+I] and W[N+I] can be considered a complex 
function of z ,  analytic in a region containing the unit circle, and can be expanded in the 
corresponding Laurent series (this is normally performed algebraically by expanding each 
function with respect to all ‘small’ parameters: p of the perturbed planet, the eccentricity of 
a perturbing planet, the ratio of the two planets’ axes, etc). We denote the coefficient of z” 
in each of these expansions by Q. and W,, respectively. When the perturbing function f has 
no explicit time dependence of its parameters (note that f is ordinarily~a function of r, and 
possibly its time derivative. which introduces what we call an implicit time dependence), 
both Q. and W,, are constant. 

Typically though, f contains parameters with their own time variation which, to simplify 
matters, will be considered harmonic (since any periodic function can be decomposed into 
a Fourier series, the subsequent formulae cover all periodic perturbations). To be specific, 
we assume that each Q. can be written as qn exp[iar(s -so)], and each W, with a positive 
index n as wn exp[ior(s -so)]. Thus, $ is simply the period of the ‘external’ perturbation, 
relative to the period of the perturbed planet. Due to the W, = -W; relationship, the W’s 
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with a negative index constitute a ‘mirror image’ of the positiveindex coefficients, and 
cany no additional information. Due to the same relationship, the coefficient of WO will 
need to have two terms, WO exp[ia(s - SO)] - WO” exp[-iff(s - SO)]. In the general case, 
each coefficient can achlally consist of a sum of terms of the above type, all with distinct 
values of 01. It is sufficient to present a solution assuming a single value of 01 only, as the 
extension to the general case is trivial (the problem is, at this level, linear). 

Furthermore, since the solution we are constructing does not differentiate between the 
implicit (r dependent) and explicit (‘external‘) time dependence, we may combine these 
together and have the integer part of 4 contribute the corresponding extra power of z .  
Thus, (U can always be reduced to a value from the interval [-1,l) for a positive index 
m, from (-1.11 form negative, and from (-1, 1) when m = 0 (to preserve the symmetry 
o f  the W’s). This eliminates any possibility of experiencing the ‘small divisor’ syndrome! 
One can then find the following set of formulae for the .sN+I component of each of the 
basic parameters of our solution (3). 
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It is quite apparent that no denominator in any of these formulae can approach zero (in 
fact, they are all, in absolute value, greater or equal to one). This substantiates our claim 
of having eliminated small divisors. Note what would have happened if we did not extract 
the integer part of the exponent from each external z.4 variation! 

(in the 
@ = 0 case 2, and SA become meaningless individually, one needs only their % - SA 
combination which remains finite). 

The convergence of the ,%related infinite summations ((44, (4b), (4g) and (4i)) can be 
easily established for each specific case of the perturbing force f. It is not uncommon for 
the set of the Q. and W, values (let us call it A) to be finite, and the issue thus becoming 
trivial. In any case, note that is a very convenient transformation (in terms of speeding 
up the convergence) of the perturbed planet's eccentricity, with values from [0, 1) (but 
normally quite small). Thus, for example, a bounded A 'will ensure convergence for each 
such p. 

The E and z-related infinite sums of (4h) and (4i) will normally converge, as both the 
Q, and the W, sequence represent coefficients of a Fourier-like expansion, further divided 
by a x n3 factor. 

The issue of.convergence of the iteration procedure itself (i.e. with respect to E )  will 
have to be left open to further investigation. A lack of the corresponding proof is the 
common feature of most traditional techniques which, furthermore, often yield incorrect or 
unreliable results beyond the first order [9]. Our technique offers an improvement in terms 
of the latter aspects (the driving force of its development was its practical appeal); an effort 
focused on its theoretical foundations will hopefully resolve the former, convergence-Elated 
issue as well. 

To conclude the section, we would like to emphasize one non-trivial feature of the above 

Also note that 2 3 ,  and consequently s& may contain terms proportional to 
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process, namely the necessity of expanding all functions of time in terms of s - SO only. 
This is indeed the most natural choice for the 'internal' variables (r, r ,  r', etc), but not so 
at all for the 'external' parameters, which are usually expressed in terms of ordinary time t. 
Unfortunately, the procedure requires this z to be converted to an s -SO expansion, to enable 
us to treat the perturbing function in a unified manner when extlacting the coefficients of 
integer powers of z (so crucial to the procedure). Such a conversion is achieved by 

t = d(s - so) 
1 -SA 

which follows from the definition of the modified time s (the last bullet item of the previous 
section). "he integration itself is quite trivial, as the integrand can be expanded in the manner 
of Q[N+I~  and WIN+,], and easily integrated term by term. Note that it is necessary to update 
i after each iteration to maintain its .?'"accuracy (the right hand side of equation (2)  will 
supply the additional power of E). 

The attitude of the orbit can be resolved from the three components of Z by the method 
of strained coordinates 141, much in the spirit of the cunent technique. Some coupling of 
these equations to those yielding the values of so. A,  and B (equations (44, (4e) and (44) 
is to be expected (the method will easily accommodate any number of unknown functions). 

4. Brief example 

We demonstrate the power of the technique by explaining the formation of Kirkwood gaps 
in the asteroid belt (a well known and traditionally challenging problem). The details are 
presented only for the most conspicuous gap observed at double Jupiter's frequency; the 
treatment of other commensurable frequencies would be quite similar. 

For simplicity we assume that Jupiter has a simple circular motion (it appears that its 
eccentricity would contribute only minor corrections to our solution), coplanar with the 
asteroid's orbit, whose initial semi-major axis (A2 + B2, in our notation) will be our unit 
of length (the Jupiter orbit's radius is thus 22/3). The perturbing force will have the usual 
form of 

R - r  
ElL (m - ;) 

where R is the Jupiter's location, and E is its mass, relative to the mass of the Sun. Note 
that the time dependence of R needs to be expressed in terms of the asteroid's modified 
time s, as follows 

' sin@ - ZSO) + (s -SO) +SO + 1 [(A2 + B2)3/2 - 11 ds)) . (7) 

Applying the procedure of the previous section at its Crudest approximation (i.e. to the 
first order in E, keeping the leading terms of the f l  expansion only, and assuming that A N 1 
and B Y 0 in computing the coefficients), results in 

E 
(@ -so)' = -c- COS.(Z@ - 2so - 2X) 

p ' = -  CE sin@$ - 2,- 2 x )  
2a 

[(A2 + B2)3/21' = 12cep sin@$ - 20 - 2X) 
X' = (A2 + B2)3/2 - 1 
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with 

where @ is the direction of the asteroid‘s apohelium, and the independent variable is the 
asteroid’s modified time s (in its slightly irregular time scale ic represents the length of the 
asteroid‘s cycle). The first of these equations is the result of (44 and (44, the next two 
equations follow easily from (4e) And (4~’), the last equation is a consequence of 

X 5 [ ( A 2 +  Bz)3/2 - I]&. (10) s 
We should mention that these equations apply not only to the case of the asteroid’s 

motion as it is exactly commensurable with that of Jupiter’s, but they allow any initial 
value of A’ + B2 as long as it is reasonably close to 1. 

Solving equations (8u-d) (either numerically, or by the technique of strained coordinates 
[4]) reveals that all dependent variables oscillate with relatively large amplitudes around a 
steady mean in the case of both (A’ + B2)3/’ and 6,  around a linear trend in the case of X 
and @ - SO. Without any extra perturbations this motion would continue indefinitely. But 
there are always other small disturbing forces acting on the asteroid (interestingly enough, 
even the truncation error of a numerical integration will serve this purpose) which affect 
most dramatically, even though extremely slowly, the mean values of (A2 + B2)3/2 and 8. 
After a correspondingly long time, the resulting slow drift will eventually bring the same 
two variables close to yet another possible (and trivial) solution of our differential equations, 
namely the one which makes sin($ - so - X) identically equal to zero. At that point the 
oscillations cease and both the semi-major axis and eccentricity of the asteroid ‘freeze’ at 
their corresponding stationary values. These can be obtained from 

E 
(Az  + B2)3/2 7.1 & c- (114  

(1 Ib) 
where the zero subscript implies initial values. For (A i  + B i ) 3 / 2  < 1.042 the corresponding 
stationary solution is always smaller than 0.985,~When ( A i  + B,2)3/2 > 1.042, the ultimate 
value of (A2 + B2)’/’ will be the closest of three available stationary solutions, which is 
always bigger than 1.033. This creates a 3.2%-wide gap in observed values of (A2 + B2). 
The actual gap is slightly narrower than our solution, but this may be due to some of the 
asteroids not having had enough time to abandon the oscillatory stage of their motion (this 
can be easily established by observing their eccentricity behaviour). 

One has to conclude that the traditional explanations of Kirkwood gaps [5, 61, all based 
on the oscillating (transient) mode of the solution, appear incorrect. The inadequacy of these 
attempts seems to have been recognized [9,2] ;  the current research usually concentrates on 
chaotic behaviour related to the gap regions [l], still failing to fully and properly explain 
the main phenomenon. 

Equations (8u-4 are interesting from a mathematical point of view as well. They result 
in two solution classes, one in which $ - $0 - X oscillates around a linear t rnd,  the 
other in which the same variable oscillates around a solution to sin[2($ -so - X)] = 0. 
In their unperturbed form, all these solutions are oscillatory and stable, without being 
‘attracted‘ to the stationary values of equations (llu-b). The situation is dramatically 
different when the equations acquire a small dissipative term. A stationary solution then 
seems to be the ultimate fate of practically all initial conditions (this is true mainly of 
systematic perturbations, those generated randomly will sometimes lead to a continual drift 

28 
(A2  + B2)312i- 6B2 = (Ai  + B:)31z + 68: 



6252 J Vrbik 

in A* f B2-the asteroid being ‘kicked out’ of its orbit). Once a stationary solution is 
reached, all oscillations cease. An exact mathematical analysis of these phenomena is 
beyond the scope of this paper. 

5. Conclusion 

A new technique for solving an age old problem of a perturbed satellite motion has been 
presented in detail. Its main advantage is its conceptual simplicity (the basic principle is to 
expand each side of equation (2) in powers of e, and match the corresponding coefficients) 
and the consequent ease of computerization. This also results in eliminating the problem of 
small divisors, and enables us to deal with perturbations having commensurable frequencies. 
On the negative side, our solution is obtained in a series form only, but this does not appear 
to be a major limitation. 

The procedure has been successfully tested (up to the fourth order) under a variety of 
situations (lunar problem [l I], perihelion precession, oblateness perturbations, etc). The 
range of its potential applications seems to include all traditionally treated problem of this 
kind. Furthermore, the technique is capable of dealing with them in a truly unified manner, 
requiring no special adaptation to the particular-case circumstances. 

To underline the improvement achieved over some previous work, we point out that the 
original presentation [lo] dealt with conservative forces only (no ‘external‘ time dependence) 
and presented the technique in its ‘double iterative’ form (to build the solution, one had to 
iterate in terms of p, in addition to E) .  The subsequent article [ll] removed the conservative 
force limitation and introduced an external time dependence of f, but it considered its 
variation to be ‘slow’, and dealt with it by introducing yet another iteration parameter (our 
a), thus making the procedure ‘triply iterative’ ! The current paper eliminates the need for 
the two extra iteration levels by presenting an explicit (in terms of @ and a) set of formulae 
for the solution to be built, iteratively, in terms of powers of E only. 
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